Microalbuminuria as a Marker of Sepsis - A Prospective Study in a Tertiary Care Hospital.

Rahul Agarwal¹, Jigar M. Haria²
¹Postgraduate, Department of Medicine, Teerthanker Medical Collage & Research centre Moradabad (U.P.) India.
²Professor, Department of Medicine, Teerthanker Medical Collage & Research centre Moradabad (U.P.) India.

Received: April 2017
Accepted: April 2017

Copyright: © the author(s), publisher. Annals of International Medical and Dental Research (AIMDR) is an Official Publication of “Society for Health Care & Research Development”. It is an open-access article distributed under the terms of the Creative Commons Attribution Non-Commercial License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

ABSTRACT

Background: Diffused endothelial dysfunction in sepsis leads to an increase in systemic capillary permeability, the renal component manifesting as microalbuminuria. The degree of microalbuminuria correlates with the severity of the acute insult, the quantification of which may serve to predict sepsis and mortality in critically ill patients. Aim: To study the trend of microalbuminuria in sepsis patient, to evaluate microalbuminuria as novel biomarker of sepsis, To evaluate the capability of microalbuminuria for the prediction of ICU mortality. Methods: After exclusions, between November 2014 to May 2015, 50 consecutive adult patients were found eligible. Urine spot samples was collected at the time of ICU admission for Albumin Creatinine Ratio 1 and Albumin Creatinine Ratio 2 at 24hrs of ICU admission and Albumin creatinine Ratio 3. Results: Total of 50 patients were included into the study. The study included 56% of the patients as males and 44% as females. Out of 50 patients 78% of the patients had microalbuminuria, 66% of the patient were culture positive, out of which 79.49% of the patient had microalbuminuria. Majority of the patient (87.18%) with microalbuminuria require mechanical ventilation and the ICU stay was prolonged in survivor patients. Mortality rate was 61.54%. Microalbuminuria levels at 24 hours of admission among survivors and non survivors indicates its prognostic significance in ICU mortality. Conclusion: Microalbuminuria is a reliable marker of sepsis, At 48 hours of admission, increased levels of microalbuminuria compared to microalbuminuria levels at admission and 24 hour, indicates its prognostic significance among survivors and non survivors in critically ill patients.

Keywords: Microalbuminuria, Sepsis.

INTRODUCTION

Sepsis remains a major global healthcare concern, owing to high morbidity and mortality, despite the advances in medical therapeutics.[1,2] Targeted therapies probably lose their efficacy due to late administration.[3,4] Till date, there is no reliable method of diagnosing sepsis early in the critically ill. Sepsis is marked by a severe host defense response that involves triggering of potent inflammatory cascades which release a plethora of pro-inflammatory molecules into the circulation.[5] The endothelium becomes dysfunctional due to the sustained onslaught of the inflammatory molecules and the simultaneous oxidative stress. An early event is the loss of barrier integrity leading to systemic capillary leak.[6] The glomerular manifestation of this enhanced capillary permeability is increased excretion of albumin in the urine.[7]

Microalbuminuria, defined as 30–300 mg/day of albumin excretion in the urine, occurs rapidly after an acute inflammatory insult such as sepsis and persists in patients with complications.[8–13] It is a common finding in critically ill patients, where it has shown promise not only as a predictor of organ failure and vasopressor requirement but of mortality, faring better than Acute Physiological and Chronic Health Evaluation (APACHE) II score and Sequential Organ Function Assessment (SOFA) scores.[14–19] Similar endothelial dysfunction may occur in non-septic inflammatory states. But, it is not known whether the degree of microalbuminuria is different after a septic insult when compared to noninfectious ones such as pancreatitis, burns, trauma etc. and, whether it could delineate sepsis in a heterogeneous population of critically ill patients. By drawing an analogy with current biomarkers of sepsis such as procalcitonin (PCT), C-reactive protein (CRP) and the markers of endothelial damage such as the adhesion molecules, which are relatively elevated in sepsis,[20,21] we surmised a similar occurrence for microalbuminuria. To test this hypothesis, our study endeavored to explore a diagnostic role of microalbuminuria, by quantifying its level in patients with and without sepsis.
secondary aim was to evaluate the ability of microalbuminuria to predict mortality in the ICU.

MATERIALS AND METHODS

The present study was a Prospective, non-interventional study conducted on patients admitted to Medicine ICU/ Central ICU, Teerthanker Mahaveer Medical College & Hospital, Moradabad from Nov 2014 to May 2015. Patients of age 18-80 from both sexes with 2 or more features of SIRS (systemic inflammatory response syndrome) and suspected infection were included in the study. Patients receiving nephrotoxic drugs, with preexisting urinary tract infection, with urologic trauma resulting in frank hematuria or urinary infection, with preexisting chronic kidney disease (serum creatinine level ≥ 2.0mg/dL), pregnancy, and anuria were excluded from the study.

Collected spot urine sample, 24 hours and after 48 hour of admission to medical ICU. Samples were tested for urine microalbumin by immunoturbidometric method and for urine creatinine by Jaffe method and urine microalbumin: creatinine ratio was calculated. All the investigations like Hemoglobin, Serum Electrolytes, Blood urea and serum creatinine, RBS (Random Blood Sugar), LFT (Liver Function Test), White blood cell count, ABG (Arterial Blood Gas) if patient was on mechanical ventilator were sent and noted. Urine microalbumin: urine creatinine ratio was calculated at spot (Urine ACR1), 24 hour (Urine ACR2) and 48 hour (Urine ACR3) of admission to the ICU

Two or more of the following if present: SIRS. [2]

1. Fever (>38 C) / Hypothermia (<36)
2. Tachypnea (Respiratory rate >24/min)
3. Tachycardia (Heart rate >90/min)
4. Leukocytosis (>12000/microliter) or
5. Leukopenia (<4000/microliter) or >10% bands.

Data were collected using a pretested proforma meeting the objectives of the study. Detailed history, physical examination and necessary investigation was undertaken. The purpose of the study was explained to the patient and informed consent were obtained. Patients were followed up during the course of the hospital stay and the outcome of the patient (i.e. Death/Survival) were recorded

RESULTS

Table 1: Distribution of patients according to their Urine ACR1

<table>
<thead>
<tr>
<th>No. of patient (n=50)</th>
<th>Non survivor</th>
<th>Survivor</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>No.</td>
<td>%</td>
<td>No.</td>
<td>%</td>
</tr>
<tr>
<td>30-90</td>
<td>0</td>
<td>0</td>
<td>22</td>
</tr>
<tr>
<td>91-150</td>
<td>8</td>
<td>16</td>
<td>4</td>
</tr>
<tr>
<td>>150</td>
<td>16</td>
<td>32</td>
<td>0</td>
</tr>
<tr>
<td>Mean±S.D</td>
<td>161.46±36.287</td>
<td>66.42±23.374</td>
<td>95.04±48.140</td>
</tr>
<tr>
<td>Range</td>
<td>32-216</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P value</td>
<td><0.0001</td>
<td><0.0001</td>
<td><0.0001</td>
</tr>
</tbody>
</table>

Urine ACR 1 (albumin creatinine ratio) was 66.42μg/mg among survivors and 161.46μg/mg among non survivors, Urine ACR 2 were 55.42μg/mg among survivors and 205.46 among non survivors and for Urine ACR 3 were 51.25 μg/mg among survivors and 296.25 μg/mg among non survivors. All were statistically significant with p value of <0.0001

Table 2: Distribution of patients according to their Urine ACR2

<table>
<thead>
<tr>
<th>Urine ACR2 (μg/mg)</th>
<th>Non survived</th>
<th>Survived</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>No.</td>
<td>%</td>
<td>No.</td>
<td>%</td>
</tr>
<tr>
<td>0-90</td>
<td>0</td>
<td>0</td>
<td>26</td>
</tr>
<tr>
<td>91-150</td>
<td>11</td>
<td>22</td>
<td>0</td>
</tr>
<tr>
<td>>150</td>
<td>13</td>
<td>26</td>
<td>0</td>
</tr>
<tr>
<td>Mean±SD</td>
<td>205.46±77.000</td>
<td>54.42±14.856</td>
<td>150.04±48.140</td>
</tr>
<tr>
<td>Range</td>
<td>33-389</td>
<td></td>
<td><0.0001</td>
</tr>
</tbody>
</table>

Table 3: Distribution of patients according to their Urine ACR3

<table>
<thead>
<tr>
<th>Urine ACR3 (μg/mg)</th>
<th>Non survival</th>
<th>Survival</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>No.</td>
<td>%</td>
<td>No.</td>
<td>%</td>
</tr>
<tr>
<td>0-90</td>
<td>0</td>
<td>0</td>
<td>26</td>
</tr>
<tr>
<td>90-150</td>
<td>4</td>
<td>8</td>
<td>0</td>
</tr>
<tr>
<td>>150</td>
<td>20</td>
<td>40</td>
<td>0</td>
</tr>
<tr>
<td>Mean±SD</td>
<td>296.25±111.352</td>
<td>51.25±11.678</td>
<td>245.00±117.284</td>
</tr>
<tr>
<td>Range</td>
<td>59-486</td>
<td></td>
<td><0.0001</td>
</tr>
</tbody>
</table>

Urine ACR 1 (albumin creatinine ratio) was 66.42μg/mg among survivors and 161.46μg/mg among non survivors, Urine ACR 2 were 55.42μg/mg among survivors and 205.46 among non survivors and for Urine ACR 3 were 51.25 μg/mg among survivors and 296.25 μg/mg among non survivors. All were statistically significant with p value of <0.0001

Table 4: Correlation of ACR at admission 24 hours and 48 hour of admission.

<table>
<thead>
<tr>
<th>Urine ACR</th>
<th>Non survived</th>
<th>Survived</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACR 1</td>
<td>66.42±23.374</td>
<td>161.46±36.287</td>
<td><0.001**</td>
</tr>
<tr>
<td>ACR 2</td>
<td>55.42±14.856</td>
<td>205.46±77.000</td>
<td><0.001**</td>
</tr>
<tr>
<td>ACR 3</td>
<td>51.25±11.678</td>
<td>296.25±111.357</td>
<td><0.001**</td>
</tr>
</tbody>
</table>

ACR has been significantly been increased in non-survivors patients

DISCUSSION

Earliest analysis of sepsis is necessary to manage patients. The cultures of the body fluids as
considered gold standard, do not come positive regularly and the results are often delayed by 48 hours, because of late result, cannot administering targeted therapies to the patient. Microalbuminuria serves as a method for quantification of alteration in systemic vascular permeability. Measurement of albumin excreted in urine sample randomly collected, known as Albumin/creatinine. Microalbuminuria levels as a result of inflammatory insult. Various studies in several groups of critically ill patients with microalbuminuria acts as an important prognostic marker of morbidity and mortality in Intensive Care Units.

This prospective study was done in Teerthanker Mahaveer Medical College and Research Centre Moradabad (U.P).

In this study mostly patients belonged to the age group of 40-70 years (66%). Mean age of the patient was 50.32±17.89. In a study done by Basu et al mean age of the patient came out to be 61.522. Grion et al the mean age was 65.8 ± 15 years23. Bhavita et al majority of the patients was males (53%).[22]

In our study mortality rate was 61.54%. In a study by Thoreveska et al mortality rate was 69% patient.[17] Basu et al showed microalbuminuria occurred in 87% of the patient.[24] In a study by Bhavita et al microalbuminuria occurred in 71% of the patient.[22]

In our study mortality rate was 61.54%. In a study conducted by Thoreveska et al mortality rate was 26.9%.[13] In a study conducted by Abid et al mortality rate was 43%.15 In a study conducted by Grion et al mortality rate was 26.7%.[22] In a study done by Grion et al mortality rate was 71.4%.[23] In a study conducted by a Bhavita et al mortality rate was 18%.[24]

In our study median ACR1 was 66.42 among survivors and ACR1 among non-survivors was 161.46, p value was <0.001 which was statistically significant. In a study done by Basu et al median ACR1 was 108.3 among survivors and ACR1 was 156.5 among non-survivors, p value was 0.41 which was not statistically significant.[22] In a study conducted by Groin et al median ACR1 among survivors was 61.88 and ACR1 among non-survivors was 137.0223. In a study conducted by Bhavita et al median ACR1 among survivors was 89.8 and ACR1 was 161.8, p value was <0.001 which was statistically significant.[24]

In a study done by Gosling et al median ACR1 among survivors was 37.2 and ACR1 among non-survivors was 161.8, p value was <0.0002 which was statistically significant.[16] In our study median ACR2 among survivors was 55.42 and ACR2 among non survivors was 205.46, p value was < 0.001 which was statistically significant, indicating ACR2 can be taken as prognostic significance in ICU mortality. In a study by Thoresk et al concluded ACR of >100 were 2.7 times more likely to die than those with an ACR <100, p value was 0.0007 which was statistically significant, indicating its prognostic significance.[17]

A systematic review conducted by Gopal et al, concluded that microalbuminuria can be a promising predictor of severity of illness and mortality in the icu setups 19. In a study conducted by Abid et al, group 1 -14 patients who had increased microalbuminuria median range from 45.96 to 167.96 had mortality rate was 43% and group 2 – 26 patients who had decreasing value of microalbuminuria median range from 144.97 to 68.95 had mortality rate was 15%, p value was <0.05 which was statistically significant, indicating its prognostic significance in ICU mortality.[23]

Basu et al, showed median ACR2 in survivors was 50.8 and median ACR 2 among non survivors was 154, p value was <0.004 which was statically significant, indicating its prognostic significance.[6] In a study done by Grion et al, median ACR at 3rd day of admission was 61.8 among survivors and median ACR at 3rd of admission was 137.02 among non survivors, indicating its prognostic significance.[23]

In a study done by Bhavita et al, median ACR2 at 24 hours of admission was 46 among survivors and median ACR2 at 24 hours of admission was 164.5, p value was <0.0001 which was statistically significant, indicating its prognostic significance.[14] In a study conducted by Mackinnon et al, concluded ACR measured 6hour after post admission to ICU showed a significant difference (p =0.01) among survivors & non survivors, permitting identification of patients at Increased risk of development of organ failure and death.[14]

CONCLUSION

- Microalbuminuria is a common occurrence in critically ill patients.
- Microalbuminuria is a reliable marker of sepsis.
- At 48 hours of admission, increased levels of microalbuminuria compared to microalbuminuria levels at admission and 24 hour, indicates its prognostic significance among survivors and non survivors in critically ill patients.
- Microalbuminuria is an inexpensive and rapid diagnostic bedside tool, could be efficiently utilized for identification of patient survival in ICU.
- Serial measurements of microalbuminuria may serves a helpful measure in the clinical assessment of critically ill patients at risk of worse prognosis.
REFERENCES

