A Rare Case of Multiple Calcifications and Vascular Malformation Within the Parenchyma of the Parotid Salivary Gland Coinciding With an Intracranial Meningioma.

Mahmoud M. Bakr¹, Pak Poon², Sylvana Parkinson³, Nabil Khzam⁴
¹Lecturer in General Dental Practice, School of Dentistry and Oral Health, Griffith University, Gold Coast, QLD 4222, Australia
²General Dentist, Private Practice, Perth, WA 6001, Australia
³General Dentist, Private Practice, Perth, WA 6001, Australia
⁴Specialist Periodontist, Gateway Dental Specialists, Booragoon, Perth, WA 6154, Australia

ABSTRACT

Multiple calcifications in salivary glands have been previously reported in inflammatory and autoimmune disorders. However, the etiology and mechanism of formation of such calcifications are not yet fully understood. A very rare case of a 50 year female with multiple calcifications and vascular malformation within the left parotid salivary gland is presented. Further investigations of the lesion uncovered an intracranial meningioma in the contralateral posterior cranial fossa. Additional investigations and multidisciplinary specialist management was deemed necessary to shed some light on the degree of association between the calcific foci within the parotid gland and the intracranial meningioma.

Keywords: Calcification, CT Scan, Parotid gland, Sialolithiasis.

INTRODUCTION

Sialolithiasis or calcifications within salivary glands are more common in the submandibular gland (80%-90%), when compared to the parotid gland (5%-20%).¹ A number of cases reported multiple sialolithiasis in the Stensen’s duct of the parotid gland, however there was no statement in relation to calcifications in the parenchyma of the parotid gland.²³⁴ There might be a possible correlation between sialolithiasis and systemic disorders. However, not enough evidence have been found in the literature. Examples include the coincidence of sialolithiasis and nephrolithiasis was reported in patients with Sjögren’s syndrome, a case with renal and pancreatic calcifications,⁵ a case with arthritis mutilans and tumoral calcifications and a number of cases with pseudotumors with calcifications in the parotid Gland.⁶⁻⁸ In general, multiple sialolithiasis in the parenchyma of the parotid gland have not yet been reported. Incidentally detected parotid salivary gland calcifications have been associated with chronic conditions including HIV, alcoholism, chronic kidney disease, autoimmune disease, and elevated alkaline phosphatase.⁹ The proposed association between parotid gland calcification and chronic conditions is a consequence of a chronic lymphocyte-mediated destruction of the exocrine glands that eventually leads to intraductal calcification.¹⁰⁻²²

Several imaging modalities, such as plain X-ray examination,¹²³⁻²⁴ sialography, ultrasound (US), magnetic resonance imaging (MRI), ¹⁸F-FDG positron emission tomography (PET) and computed tomography (CT),²³⁻²⁵ are available for detection of calcifications in the parotid gland. CT is the most useful tool in detection and evaluation of small calcifications because of its high spatial resolution.²⁶⁻²⁹ MRI, CT and US are the methods of choice for obstruction of ducts or tumours in the salivary glands whereas scintigraphy is preferred for examination of parenchymal damage and glandular function, especially Sjögren Syndrome. MRI is superior in characterization of local invasion, extension of larger lesions and in
identifying nodal spread as well as the extra-cranial part of the facial nerve. CT may also be used for tumour staging possibly in combination with 18F-FDG/PET, which is not used as a primary diagnostic tool. However, it may have a potential for staging and restaging of malignant salivary gland tumours.\[25\]

CASE REPORT

A 50 year old female was referred to specialist periodontist (NK) for management of her periodontal disease as well as a second opinion on the radiopaque lesions within left parotid gland on the OPG [Figure 1]. The patient is medically healthy apart from a family history of diabetes and is currently on antidepressant medications. The patient was referred for a CT scan for further investigation of the radiopaque lesions [Figure 2]. Unenhanced axial sections of the mandible were obtained. Coronal and sagittal reconstructions were performed in the CT scan. CT scan results revealed seventeen calcific foci with different sizes ranging from 0.2cm to 1.3cm and projected over the left parotid gland. The calcific foci were noted within the parotid gland substance and along the margin of the superficial and deep lobes. The largest focus was noted along the posterior margin of the left ramus of the mandible and measuring 1.1cm X 1.3cm in cross sectional dimensions. The calcific foci within the parotid gland represented either sialoliths (calculi) or dystrophic calcification secondary to long standing chronic inflammation. No evidence of calcification was present along the parotid gland duct, the right parotid gland or submandibular glands. There were no osteolytic lesions or exotoses detected in the mandible. There was an increase in the number of lymph nodes bilaterally, indicating a possible lymph node proliferative abnormality.

The patient was then referred for Magnetic Resonance Imaging (MRI). MRI results confirmed the findings from the CT scan and showed a large lesion (5cm) involving the deep lobe and the deep portion of the superficial lobe of the left parotid gland. The lesion represented a typical venous vascular malformation and contained multiple phleboliths [Figure 3]. The lesion had lobular margins without any evidence of arterial vessels within it. Therefore, biopsy of the lesion was not advised and a referral to an Ear Nose and Throat surgeon was recommended. Furthermore, there was an incidental finding of a 1.5cm lesion (Meningioma) on the right posterior cranial fossa with a broad base along the petrous apex posterior to the right internal auditory cana [Figure 4 & 5]. There was no significant mass effect on the brain prenchyma. Referral to a Neurosurgeon was also recommended.

Figure 1: Showing an Orthopantograph (OPG) of the patient showing the multiple calcific foci on the left side (arrows).

Figure 2: Showing a number of CT scan sections with illustrations of the calcific foci on the left side (red circles).

Figure 3: Showing a number of MRI sectional images with the left parotid gland lesion highlighted (Red circles).

Figure 4: Showing intracranial MRI sectional images highlighting the location of the Meningioma (Green arrows and red circles).
Differential diagnosis of this present case could include pleomorphic adenoma, soft tissue chondroma or osteoma, extracranial meningioma, osteocartilaginous tumors arising from bone exostoses, vascular ossification of atherosclerotic lesions, or hereditary conditions such as Albright’s syndrome and fibrodysplasia ossificans progressive. In the present case, the patient was referred to an ENT surgeon and a Neurosurgeon to exclude any possible malignancies. The importance of clinical suspicion for a malignancy in the presence of a calcified mass has been highlighted in literature. The above mentioned referrals were absolutely essential in the present as a biopsy was not recommended for this case due to the vascular malformation that was evident within the lesion. It should be noted that Salivary gland tumors rarely show calcifications in the parenchymal tissue; however, it is commonly seen in inflammatory disorders of salivary glands.

The mechanism of parotid calcification in cases of inflammatory/autoimmune disorders is not well understood, but it was hypothesized to involve calcification and calculus formation related to insufficient salivary flow and high concentrations of calcium salts in the saliva. Therefore, incidental parotid calcifications seen on imaging have been typically linked to chronic autoimmune/inflammatory conditions. A detailed medical history as well as further clinical and serological investigations are necessary for the present case in order to exclude a number of associated medical conditions as well as determining the degree of association between the multiple parotid calcifications and the intracranial meningioma.

CONCLUSION

A case of multiple calcific foci within the left parotid gland was presented. During the investigation, an incidental finding of a Meningioma in the right posterior cranial fossa. To our knowledge similar cases were not previously reported. The etiology of the calcific foci and the degree of association between them and the intracranial meningioma need further investigations and medical specialist management. For the above mentioned reason a careful medical reassessment of the patient was deemed necessary.

REFERENCES


Source of Support: Nil. Conflict of Interest: None declared.