Estimation of Fetal Age in Relation to Parity by Sonographic Assessment of Umbilical Cord Diameter.

Swagata Bhattacharya¹, Debabrata Maity², Anirban Sadhu³, Senjuti Khanra⁴

¹Senior Resident (Anatomy), I.P.G.M.E.R., Kolkata, West Bengal, India.
²Post Doctorate Trainee in Plastic and Reconstructive Surgery, R.G.Kar Medical College and Hospital, West Bengal, India.
³Associate Professor, Department of Anatomy, R.G.Kar Medical College and Hospital, West Bengal, India.
⁴Assistant Professor, Institute of Engineering and Management, Kolkata, West Bengal, India.

Received: September 2018
Accepted: September 2018

ABSTRACT

Background: The Sonographic cross sectional study was to determine the curve for umbilical cord diameter with respect to fetal age in primi and multigravida separately. Methods: 100 uneventful pregnancies of second and third trimester were studied. SPSS, v17, IBM, Chicago, were used for statistical analysis and polynomial regression equations were calculated. Results: The regression equation of umbilical cord diameter to Gestational Age: \[y = -0.018x^2 + 1.290x - 9.418 \] (\[R^2 = 0.585 \]) in primigravida. For multigravida cord diameter to Gestational Age: \[y = -6.020 + 0.990x - 0.012x^2 \] (\[R^2 = 0.613 \]), where \(x \) is fetal age in weeks, \(y \) is cord diameter in millimetres. Conclusion: The diameter increased significantly with fetal age up to 32 weeks, thereafter a plateau was seen.

Keywords: Gestational age, Parity, Umbilical cord.

INTRODUCTION

The umbilical cord forms the connecting stalk between the fetus and placenta. It extends from the fetal umbilicus to the fetal surface of the placenta. Fetal blood flows to and from the placenta through this. Evaluation of post partum umbilical cord has been performed for many years. With ultrasonographic studies we are now able to study it intra partum. The decreased thickness of umbilical cord has been associated with adverse pregnancy outcome. Significant differences were also observed in mean gestational age, mode of delivery, birth weight also with umbilical cord thickness. Measurement of the diameter may reveal risk of antenatal and prenatal complications. We have simply tried here to show the umbilical cord diameters and their relationship to that of fetal age in uneventful pregnancies of primi and multigravida in a part of West Bengal, India. Our objective was to find if there is any relationship between umbilical cord diameter to gestational age separately for primi and multigravida.

MATERIALS AND METHODS

Prior to initiation, the mothers fulfilling the inclusion criteria were provided with information and nature of study. The women who agreed to participate signed an informed consent. The cross sectional study was carried out in a private clinic in West Bengal, between February 2016 to July 2016, in a total of 100 pregnant women, who had referred to this clinic for a routine ultrasonographic scan at different gestational ages of an uneventful pregnancy.

Inclusion criteria
Comprised of a single pregnancy, living fetus, gestational age previously established according to the date of last menstrual period when reliable or according to an ultrasonic scan performed in the 1st trimester, intact membranes, normal amniotic fluid index and no maternal illness like lupus, nephropathy or previously pregnancies with IUGR, and macrosomia.

Exclusion criteria
Comprised of maternal diabetes mellitus, arterial hypertension of any etiology, fetal malformations oligohydramnios or polyhydramnios, fetuses with signs of intra uterine growth retardation or small for gestational age or large for gestational age or signs of fetal macrosomia and morphological abnormalities of umbilical cord.
The examinations were performed using two ultrasonographic machines – DC-7 MINDRAY-Color Doppler MX-4C006581 and DC-7 MINDRAY-Color Doppler MX-13001826, using 3.5 MHz transducer. All the mothers of more than fourteen weeks of gestation, the diameter of umbilical cord were measured within a maximum distance of 2.0 cm, adjacent to its insertion in the fetal abdominal wall. The diameter of the cord was measured in a free loop of cord adjacent to its insertion into the fetal abdominal wall, placing the markers at its outer borders and with maximum image magnification along its longitudinal axis, like the technique described by Ghezzi et al.\(^\text{[14]}\). In addition to other parameters routinely seen in pregnancies, the fetal age was measured according to biparietal diameter, abdominal circumferences and the length of femur.

Statistical analysis
The data was collected in predesigned Microsoft Office 2007 Excel worksheet, Washington. The data were compared between primigravida and multigravida pregnant women attending in a private clinic in West Bengal in single cross-sectional study using SPSS, v17, IBM, Chicago. The independent continuous variable was fetal age in weeks. The dependent variables was umbilical cord diameter (mm).

Sample size: Determination for regression analysis study.

<table>
<thead>
<tr>
<th>Table 1: Mother’s Statistics</th>
<th>Group</th>
<th>N</th>
<th>Mean</th>
<th>Std. Deviation</th>
<th>Std. Error Mean</th>
<th>P VALUE*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mother_age years</td>
<td>A</td>
<td>54</td>
<td>20.96</td>
<td>3.047</td>
<td>0.415</td>
<td><0.001</td>
</tr>
<tr>
<td></td>
<td>B</td>
<td>46</td>
<td>24.91</td>
<td>4.082</td>
<td>0.602</td>
<td></td>
</tr>
<tr>
<td>Mother_weight kgs</td>
<td>A</td>
<td>54</td>
<td>52.85</td>
<td>5.85165</td>
<td>0.79631</td>
<td>0.152</td>
</tr>
<tr>
<td></td>
<td>B</td>
<td>46</td>
<td>54.84</td>
<td>8.17847</td>
<td>1.20585</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Table 2: Fetal Statistics</th>
<th>Group</th>
<th>N</th>
<th>Mean</th>
<th>Std. Deviation</th>
<th>Std. Error Mean</th>
<th>P VALUE*</th>
</tr>
</thead>
<tbody>
<tr>
<td>B.P.D cm</td>
<td>A</td>
<td>54</td>
<td>27.12</td>
<td>7.46829</td>
<td>1.01631</td>
<td>0.373</td>
</tr>
<tr>
<td></td>
<td>B</td>
<td>46</td>
<td>28.41</td>
<td>6.75796</td>
<td>0.99641</td>
<td></td>
</tr>
<tr>
<td>A.C cm</td>
<td>A</td>
<td>34</td>
<td>26.81</td>
<td>7.36405</td>
<td>1.00212</td>
<td>0.422</td>
</tr>
<tr>
<td></td>
<td>B</td>
<td>46</td>
<td>27.93</td>
<td>6.36100</td>
<td>0.93788</td>
<td></td>
</tr>
<tr>
<td>F.L cm</td>
<td>A</td>
<td>34</td>
<td>26.98</td>
<td>7.36255</td>
<td>1.00192</td>
<td>0.552</td>
</tr>
<tr>
<td></td>
<td>B</td>
<td>46</td>
<td>27.82</td>
<td>6.66768</td>
<td>0.98310</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Table 3: Fetal age and umbilical cord diameters</th>
<th>Group</th>
<th>N</th>
<th>Mean</th>
<th>Std. Deviation</th>
<th>Std. Error Mean</th>
<th>P VALUE*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fetal_age_wks</td>
<td>A</td>
<td>54</td>
<td>27.24</td>
<td>7.74357</td>
<td>1.05374</td>
<td>0.524</td>
</tr>
<tr>
<td></td>
<td>B</td>
<td>46</td>
<td>28.17</td>
<td>6.67101</td>
<td>0.98359</td>
<td></td>
</tr>
<tr>
<td>Umbilical_diameter_mm</td>
<td>A</td>
<td>54</td>
<td>10.71</td>
<td>2.71794</td>
<td>0.36986</td>
<td>0.070</td>
</tr>
<tr>
<td></td>
<td>B</td>
<td>46</td>
<td>11.70</td>
<td>2.68919</td>
<td>0.39650</td>
<td></td>
</tr>
</tbody>
</table>

Regression model results description
For A subset of individuals, y (umbilical cord diameter mm) = -9.418 + 1.290 x – 0.018 x^2, where x is fetal age in weeks (R^2 = 0.585, p value <0.001). Likewise for B subset of individuals, y (umbilical cord diameter mm) = -6.020 + 0.990 x – 0.012 x^2, where x is fetal age in weeks (R^2 = 0.613, p value <0.001). [Figure 1]

RESULTS
The tables show a mild increase in all parameters in group B (multigravida) than in group A (primigravida) but, excepting mothers age, the values are not significant.
general the diameter increases with fetal age till 35 weeks thereafter it attains a steady state. Polynomial (quadratic) regression analysis was done to develop equations for establishing relationships among umbilical cord diameter and fetal age parameters separately for primigravida and multigravida pregnant women.

Umbilical Cord Diameter Graphs

Figure 1: For A subset of individuals, \(y = -9.418 + 1.290 x - 0.018 x^2 \), where \(x \) is fetal age in weeks (\(R^2 = 0.585 \), p value <0.001).

Figure 2: For B subset of individuals, \(y = -6.020 + 0.990 x - 0.012 x^2 \), where \(x \) is fetal age in weeks (\(R^2 = 0.613 \), p value <0.001).

DISCUSSION

Thin cords are related to complications in outcome of pregnancies or low birth weight for quite a long time and were also described in literature by Raio et al.[8] With the advent of sonography initially umbilical cord of early pregnancies were studied. Weissman et al,[5] reported maximum cord diameter to be around at 38 weeks, later than those of our studies. Though it also depicted a correlation. Studies by Predanic et al,[15] supported that of Raio et al.[7]

In our present study we have the umbilical cord diameter increasing with gestational age up to 33 weeks then becoming plateau like up to 35 weeks. The reason may be up to 33 weeks there was rapid increase in growth of fetus after that rate of increase in fetal size fell gradually reaching a plateau up to 35 weeks. After which we observed a decline in the diameter may be due to change in shape or compromise in fetal circulation & starting switch over of circulation.

There has been mild increase in mean parameters in multigravida and also attending a plateau stage at a later gestational age than that of a primigravida. A bigger passage of birth for the baby may be the probable reason. Though no positive linear relationship was found between umbilical cord parameters to that of parity , existence of which would complicate the scenario.

Limitations of the study being observer bias, small period of study, small sample size.

CONCLUSION

Umbilical cord diameter and cross-section area help to predict the gestational age correctly in cases of difficulty in measuring BPD, HC, AC, FL, like anencephaly, hydrocephalus, achondroplasia, small for age fetus. The increase in cord diameter attends a plateau at a later gestational age in multigravida than primigravida.

REFERENCES

Source of Support: Nil, **Conflict of Interest:** None declared.