Effect of Iron Deficiency Anemia on HbA1c Levels in Controlled Plasma Glucose Levels.

Manika Khare¹, Ajit Thakur², Jyoti Batra³, Pratibha Yadav⁴, (Maj.) Murari lal Dhanetwal¹, M Ali Sayed¹

¹Assistant Professor, Department of Pathology, Jaipur National University Institute of Medical Sciences & Research, Jaipur – 302017, Rajasthan.
²Assistant Professor, Department of Biochemistry, Jaipur National University Institute of Medical Sciences & Research, Jaipur – 302017, Rajasthan, India.
³Professor, Department of Biochemistry, Santosh Medical College, Ghaziabad, NCR, Delhi, India.
⁴Associate Professor, Department of Biochemistry, Jaipur National University Institute of Medical Sciences & Research, Jaipur – 302017, Rajasthan.

Received: December 2018
Accepted: December 2018

ABSTRACT

Background: Anaemia is a major health issue that has a wide global impact involving approximately 1/3rd of patients with anaemia. HbA1C levels are not influenced by blood glucose levels alone. Studies suggest that conditions like IDA, haemolytic anaemia, alcohol ingestion, pregnancy, blood loss, and uraemia may alter HbA1C levels independent of glycaemic status. Methods: Totally 200 patients were included in the study. 100 patients were controlled diabetics with iron deficiency anemia and 100 were controlled diabetics without iron deficiency anemia. Comparison of levels of HbA1c was done between the two groups. Results: Correlation between mcv and hba1c is -0.76716. Which is strongly negative correlated. P – Value for the correlation test is 0.000001. Conclusion: Iron deficiency anemia has role in elevating A1C in both the groups. Iron deficiency anemia elevates HbA1c levels in diabetic individuals with controlled plasma glucose levels. The elevation is more in patients having plasma glucose levels between 100 to 126 mg/dl. Hence, before altering the treatment regimen for diabetes, iron deficiency anemia should be treated first.

Keywords: Iron Deficiency Anaemia, HbA1C, Plasma Glucose.

INTRODUCTION

Anaemia is a major health issue that has a wide global impact involving approximately 1/3rd of patients with anaemia Haemoglobin A1c (HbA1c) is a glycatedhemoglobin that can be used as an indicator of a patient's glycemic status over the previous 3 months HbA1C levels are not influenced by blood glucose levels alone.[1,2] Studies suggest that conditions like IDA, haemolytic anaemia, alcohol ingestion, pregnancy, blood loss, and uraemia may alter HbA1C levels independent of glycaemic status.[3] Initial studies by Brooks et al.[4] Sluiter et al.[5] and Mitchell et al.[6] showed a relationship between iron deficiency anaemia and HbA1c levels. Later, Heyningen et al.[7] and Hansen et al.[8] reported that there were no differences between the HbA1c levels of anaemic patients and controls. These observations were strikingly different from those of previous studies.

Since only limited number of studies has been carried out in Indian population, we were prompted to conduct the current study to determine the impact of IDA on HbA1C in non-diabetic population to annul the effect of glucose on HbA1C.

MATERIALS AND METHODS

This was an analytical cross-sectional study carried out in Jaipur National Institute of Medical Sciences & Research Centre, Jaipur between June 2017 to March 2018 and approved by our Institutional Ethical Committee. Totally 200 patients were included in the study. 100 patients were controlled diabetics with iron deficiency anemia and 100 were controlled diabetics without iron deficiency anemia Those having Hb<13 gm/dl in males and <12 gm/ dl in females, Hct< 40% in males and <36% in females, mean corpuscular volume (MCV) <80 fl, Mean Corpuscular Haemoglobin (MCH) <26 pg/cell, Mean Corpuscular Haemoglobin Concentration (MCHC) <32 gm/dl and peripheral smear showing microcytic hypochromic picture were considered to have IDA and confirmed by their serum iron (<60 µg/dl) and ferritin levels (<15 µg/l).[9] A total of 50 non diabetics without IDA
were enrolled to serve as controls. All the laboratory parameters analysed for study group and for the control group as well.

Patients with a history of acute blood loss, hemolytic anemia, hemoglobinopathies, kidney disease, pregnancy, established diabetes, impaired fasting glucose, or impaired glucose tolerance were excluded. Those with no history of glucose intolerance, but with fasting blood glucose levels greater than 100 mg/dl at the time of enrolment were also excluded.

Measurements: HbA1c was measured by HPLC method using Bio-Rad D-10 analyzer. Method of estimation and the analyser used to perform HbA1c analysis were the same throughout the study period. It was done by COBAS INTEGRA 400 plus which works on the principle of Competitive turbidimetric inhibition immunoassay (TINIA). Haemoglobin, MCV, MCH, and MCHC estimation was carried out by XP 800i automated counter, and serum ferritin estimation was performed by chemiluminescence with advanced acridinium ester technology method using SIEMENS - ADVIA Centaur CP Immunoassay System. Also, plasma glucose was estimated by GOD/PAP method by RANDOX RX imola series analyser.

Statistical analysis: Data was analyzed using IBM SPSS statistics 20. The data were presented as mean ± SD. A student’s t-test was applied for comparison of group means. Pearson’s coefficient of correlation was calculated to determine the correlation between the two variables. Categorical data was analyzed by χ² test. Odds ratio and 95% confidence intervals were obtained by the use of logistic regression analyses. P value less than 0.05 was considered significant.

RESULTS

Iron deficiency anemia is most common form of anemia observed in our country. Haemoglobin A1c (HbA1c), a glycated hemoglobin is formed by an irreversible, slow non-enzymatic catalysis of the β chain of globin in mature haemoglobin (Hb).[9,10]

It is used as a gold standard for monitoring glycemic status for the previous three months (the life span of a red blood cell) in patients with diabetes.[11] HbA1c is less susceptible to short-term modulation than blood glucose levels and hence provide the integrated measure for diabetes. In the process of glycation, glucose in the red cells reacts with N-terminal valine of both beta chains to form an aldime linkage which undergoes rearrangement forming a more stable ketoamine link.[12,13]

This study showed that HbA1c was significantly raised in uncontrolled diabetic females with significant odd ratio. Raised HbA1c levels were raised in males too but odd ratio was not significant. Similar results were seen in the study by Christy L et al.[3]

In this study the levels of HbA1c were found to be raised in the patient with iron deficiency patient who was statistically significant. Similar results were seen in the study done by Coban et al and sluier et al. sluiter et al gave the explanation that haemoglobin glycation is the irreversible process so HbA1c levels in the erythrocytes will increase with age. In iron deficiency, red cell production decreases, consequently an increased average age of circulating red cells ultimately leads to elevated HbA1 levels.[5]
Hashimoto et al.[14] A1C levels were elevated in pregnant diabetic women. Pregnancy is mostly associated with iron deficiency. Anemia and do cause spurious raise in HbA1c levels. The study showed that it was iron deficiency anemia which caused elevated A1C, and not pregnancy itself. Hence, Hashimoto and co-workers concluded that it should not be used as a marker of glycemic control, especially in later half of pregnancy.[14] Jen et al.[15] in their study showed that in chronic kidney disease patient having diabetes but a good glycemic control, had a spuriously high HbA1c levels due to iron deficiency associated with the disease. Therefore, iron deficiency anemia not only increases A1C levels in non-diabetic individuals but also it can interfere with its ability to determine glycemic status of diabetic individuals. This study showed significantly higher value of A1C in anaemic patients who had FGP between 100-126 mg/dl as anaemia exaggerated the picture of glycemic status in this group of patients. In this study mean A1C is 6.4% for the patient with FGP levels <100mg/dl which were higher than those of controls. Thus iron deficiency anemia has role in elevating A1C in both the groups.

CONCLUSION

Iron deficiency anemia elevates HbA1c levels in diabetic individuals with controlled plasma glucose levels. The elevation is more in patients having plasma glucose levels between 100 to 126 mg/dl. Hence, before altering the treatment regimen for diabetes, iron deficiency anemia should be treated first.

REFERENCES