Comparative Evaluation of Buckberg’ and Thomas Solution on Pulmonary Haemodynamics in Dogs

Dushyant Nijhawan¹, Rakesh K Chawla², Manju Saxena¹, Shikha Dixit¹, Vidushi Sharma¹

¹Department of Anaesthesiology, KDMC Hospital and Research Centre, Mathura, U.P.
²Department of Dermatology, KDMC Hospital and Research Centre, Mathura, U.P.

Received: November 2019
Accepted: November 2019

Copyright: © the author(s), publisher. Annals of International Medical and Dental Research (AIMDR) is an Official Publication of “Society for Health Care & Research Development”. It is an open-access article distributed under the terms of the Creative Commons Attribution Non-Commercial License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

ABSTRACT

Background: Pharmacologically cardioplegia is however associated with certain inherent limitations such as a potential danger of vascular damage. The present study compared Buckberg’ and Thomas solution on Pulmonary Haemodynamics in dogs. Methods: The present study comprised of 20 dogs. After the dogs were randomly assigned to the experimental groups, dogs were divided into 2 groups based on solution used. In group I, Buckberg’ solution and in group II, Thomas solution was used. The solution was injected as per instruction. Results: Pulmonary artery pressure was 10.9 CMS H2O in group I and 13.09 CMS H2O in group II. The difference was non-significant (P> 0.05). Conclusion: Authors found no significant difference in pulmonary arterial pressure with both solutions in dogs.

Keywords: Cardioplegic solutions, Dog, Pulmonary arterial pressure.

INTRODUCTION

Pharmacologically cardioplegia is however associated with certain inherent limitations such as a potential danger of vascular damage due to normally high concentration of different ions when in contact with normal artery and veins. For instance, potassium is extremely irritant to peripheral veins when infused in concentration which are routine during chemical cardioplegia. Hopefully, the short period of exposure of coronary arteries and veins too high cardioplegic concentration will minimise these potential effects, but long term studies in the experimental setting is needed. Histopathological studies of the heart of these patients showed that subendocardial ischaemia due to reduction in the endocardial viability ratio was probably the cause of death following such open heart bypass operations. Onset of ischaemia may never get to leave operation theatre alive. Patients who could survive for longer duration had demonstrable evidence of necrosis and fibrosis in subendocardial layers of the heart. In experimental studies one is getting to understand that diseased myocardium is more susceptible to injury during operation as compared to normal syneitium. Ischaemic injury to heart muscle during Post perfusion pulmonary congestion syndrome for pump lung is well documented clinical complication following cardiopulmonary bypass. The exact aetopathogenesis of this syndrome is still not clear. Till date, there is no documented work in the literature to account for the immediate for long term pulmonary effects following infusion of cardioplegic solution directly into the pulmonary trunk. The present study compared Buckberg’ and Thomas solution on Pulmonary Haemodynamics in dogs.

MATERIALS AND METHODS

The present study comprised of 20 dogs. The experiments were approved by the Ethical Committee. After the dogs were randomly assigned to the experimental groups, dogs were divided into 2 groups based on solution used. In group I, Buckberg’ solution and in group II, Thomas solution was used. The solution was injected as per instruction. In both groups, pulmonary Haemodynamics were measured. Results thus obtained were subjected to statistical analysis. P value less than 0.05 was considered significant.

RESULTS

Table 1: Distribution of dogs

<table>
<thead>
<tr>
<th>Groups</th>
<th>Group I</th>
<th>Group II</th>
</tr>
</thead>
<tbody>
<tr>
<td>Solution</td>
<td>Buckberg’ solution</td>
<td>Thomas solution</td>
</tr>
</tbody>
</table>

[Table 1] shows that in group I, Buckberg’ solution and in group II, Thomas solution was used.

Name & Address of Corresponding Author

Dr. Rakesh K Chawla,
Department of Dermatology,
KDMC Hospital and Research Centre,
Mathura, U.P.
Table 2: Haemodynamic parameters

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Group I</th>
<th>Group II</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>PAP</td>
<td>10.9</td>
<td>13.09</td>
<td>0.4</td>
</tr>
</tbody>
</table>

Figure 1: Haemodynamic parameters

DISCUSSION

Pulmonary arterial hypertension may be primary or due to left ventricular failure, left atrial hypertension, or pulmonary vascular obstruction, or, as in this case, lung disease, pulmonary vascular disease, or both. The diagnosis of PAH may be made easily by using color-flow and spectral Doppler, combined with 2-dimensional and M-mode echocardiography.[6] The lesions induced by PAH may include moderate-to-severe right ventricular concentric and eccentric hypertrophy, right atrial dilatation, moderate-to-severe dilatation of the main pulmonary artery and its branches, paradoxical septal motion, systolic septal flattening, reduced left ventricular internal diameter, changes in the pulmonary flow profile and velocity, and pulmonary and tricuspid valve insufficiency.[6] The present study compared Buckberg’s and Thomas solution on Pulmonary Haemodynamics in dogs.

In present study, we included 20 dogs. We used Buckberg’s solution which consisted of Plasmanate 850 ml, Salt poor albumin 50 ml, potassium Chloride 30 mmol/L, Glucose 50% - 40 ml, insulin 40 units and Trimethiomine 20 ml and Thomas solution which consists of magnesium chloride 6 H2O, 16 mmol, 3.553 gm, Potassium chloride 16 mmol/L, 1.93 gm and Procainhydrochloride 1 mmol/L, 0.2728 gm in distilled water 10 ml.

We found that pulmonary artery pressure was 10.9 CMS H2O in group I and 13.09 CMS H2O in group II. The difference was non-significant (P> 0.05).

CONCLUSION

Authors found no significant difference in pulmonary arterial pressure with both solutions in dogs.

REFERENCES

Source of Support: Nil, **Conflict of Interest:** None declared