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Introduction

Pathology is a field where most tasks are non-binary 
and context-dependent. Most traditional diagnostic 
methods of tissue analysis  -  histopathology, 
immunohistochemistry, and cytopathology - rely 
heavily on a highly subjective and time-consuming 
exercise of microscopic slide examination. 
The comprehensive nature of these subfields, 
which depends on inter-observer judgments and 
knowledge, along with the need for the use of 
manual techniques in tissue preparation involving 
intricate and independent steps,[1] makes them slow 
runners in making progress toward overcoming 
their subjective variabilities through automation. 
This change has been openly embraced by other 
subfields, such as clinical chemistry, laboratory 
medicine, and hematopathology. Implementation 
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of an automated workflow system can help in many 
areas that pose a roadblock to overall performance 
efficiency, and the advent of Digital Pathology 
(DP) – particularly through Whole Slide Imaging 
(WSI) – was a significant step forward[1,2] in striving 
for such transformation into a more automated and 
objective science.

The foundation for digital imaging in pathology 
was laid decades ago when researchers such 
as Prewitt and Mendelsohn[3,4] developed early 
techniques to convert blood smear visuals into 
matrices of optical density values that preserved 
the spatial information such that rudimentary cell 
classification could be done. The emergence of 
Artificial Intelligence (AI) has been a further step 
ahead in DP,[5] and it has managed to largely address 
the problems of variability and inefficiencies 
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associated with subjective cumbersome tasks, 
spanning from low-level ones such as object 
recognition and classification to high-level ones 
involving image analysis[6] that helps in predicting 
the diagnostic and prognostic aspects of disease, 
including assays to evaluate disease severity and 
outcome.[4]

AI-based approaches are based on image analysis, 
segmentation, detection, and diagnosis. Within 
AI, two main algorithms have become essential. 
machine learning (ML) algorithms that learn 
patterns from input data to make informed output 
predictions, and deep learning (DL), which is 
an advanced branch that uses a multilayered 
artificial neural networks, mimicking the neural 
framework of human brain,[7] to autonomously 
generate and refine features from complex datasets 
like images. DL has enhanced diagnostic and 
treatment decision-making processes, and with 
the synergistic rising power of computational 
resources, it has demonstrated the ability to 
match, and at times complement, the diagnostic 
accuracy of human experts. A  pioneering study 
by Mukhopadhyay[8] has shown that digital 
diagnosis using WSIs is non-inferior to traditional 
microscopy, and subsequently, several articles have 
critically examined the advantages of DL in this 
domain, including those by Srinidhi et al.,[9] Tran 
et al.,[10] She Y et al. (2020),[11] focusing specifically 
on cancer diagnosis.

Another attempt to drive innovation and identify 
talents has been through the first major challenge, 
called CAMELYON16, aimed to develop AI tools 
for detecting breast cancer metastases in H&E-
stained lymph node slides.[1,6] It also compared 
the accuracy of algorithms with that of medical 
students and expert pathologists. The dataset 
created for CAMELYON16 has since been widely 
used in research and inspired future challenges.[12,13]

In histopathology, AI tools offer a way to extract 
numerous subtle, sub-visual features from standard 
H&E-stained tissue sections.[4] While challenges 
such as tumor heterogeneity and sampling 
bias remain[14,15] these automated approaches 

allow for more reproducible, multi-dimensional 
interpretations of tissue architecture. Ultimately, 
integrating AI with radiological, proteomic, and 
genomic data has the potential to provide a more 
functionally relevant diagnosis.[16]

With this review, we aim to provide a comprehensive 
overview of how AI is transforming the field of 
pathology by evaluating the current capabilities 
of AI across key pathology tasks, such as cancer 
detection and grading, while also addressing the 
challenges and practical considerations for clinical 
integration. By synthesizing recent advances and 
benchmark studies, the article seeks to inform 
pathologists, clinicians, and researchers about the 
evolving role of AI in pathology and offer insights 
into future directions for implementation and 
innovation.

Technical Foundations of AI in 
Pathology

Computer-aided diagnosis (CAD)
Before advanced ML and DL models became 
popular in DP, CAD systems were used for 
image analysis in conjunction with ML, acting as 
second opinions to help reduce workload, errors, 
and costs.[17] The principle on which these CAD 
systems worked often mimicked how doctors look 
at tissue, especially the shape and features of cell 
nuclei, to detect cancer. Primitive use of CADs can 
be evidenced in the context of breast carcinoma 
studies by Brook et al.,[18] Zhang,[19] Kowal et al.[20] 
and Filipczuk et al.[21]

ML
The foundational algorithm of AI involves ML 
models that can make predictions on the basis of 
specific characteristics from images. In a basic 
sense, ML is a computer agent that learns from 
its environment to improve performance.[22] On 
a functional level, ML encloses either of the two 
types of domain features – domain-inspired or 
domain-agnostic;[4] both encompassing an umbrella 
term called “feature engineering.”[7,23-25] Domain-
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inspired features need reliance on the expertise 
of pathologists or oncologists to design features 
tailored to a specific disease or tissue type, like 
mitotic figure count in breast cancer, which is a 
subjective task done by pathologists and cannot 
be replicated broadly for other diseases.[7] Another 
example of a domain-inspired feature is assessing 
the angularity of glands in prostate cancer, where 
the measurement of how disorganized or chaotic 
the gland directions are in tissue determines the 
aggressiveness of the cancer. This has been the 
subject of a study by Lee et al.[26]

On the other end are domain-agnostic features that 
do not rely on medical expertise and can be applied 
across different tissues and diseases, including 
but not limited to texture patterns, nuclear shape, 
and size, or the spatial arrangement of cells using 
graph-based approaches.[4] Domain-agnostic 
features allow for the measurement and analysis of 
the structure and spatial organization of individual 
tissue components – such as lymphocytes or 
glands – as well as the relationships between 
different types of tissue-specific elements. A classic 
example is the use of texture features in the 
grading of prostate cancer (Gleason’s grading)[26,27] 
which distinguishes between low and high-grade 
tumors. Oropharyngeal tumors[28] are also such 
tumors where both domain-specific and domain-
agnostic handcrafted approaches have been useful 
in diagnosing, grading, and predicting treatment 
outcomes. Similarly, both play complementary 
roles in distinguishing low-grade gliomas from 
high-grade gliomas in histopathology images, as 
in a study by Elazab et al.[29,30]

The use of graph-based ML models has been found 
to be significant in assessing prognosis in several 
cancers.[31] This has been done through analysis 
of spatial tissue architecture. A  convolutional 
neural network (CNN), explained in detail in 
subsequent sections, was used by Saltz et al.,[32] 
with pathologist feedback, to detect spatial patterns 
of tumor-infiltrating lymphocytes (TILs) across 
13 different cancer types on slides taken from The 
Cancer Genome Atlas, and it was noted that they 
showed an overall strong prognostic value.[4,32] It 

was also found that in early-stage non-small cell 
lung cancer (NSCLC), the spatial relationships 
between TILs and cancer cells (captured through 
graph-based modeling) predicted recurrence in 
a much better way as compared to TIL density 
alone.[33] Another similar study was by Yuan[34] 
which analyzed TIL distributions in triple-negative 
breast cancer and they found that the ratio of 
intratumoral lymphocytes to cancer cells is linked 
to survival and cytotoxic T lymphocyte protein 
4 expression[4] This was later further extended to 
estrogen receptor (ER)-positive breast cancers as 
well, where they found similar associations with a 
late recurrence.[35] Beyond tumor cells, recent work 
has explored the prognostic role of stromal features 
also, with a study by Beck et al.[36] analyzing 
over 6000 features from epithelial and stromal 
regions in breast cancer WSIs and finding that 
stromal features have stronger associations with 
overall survival (P = 0.004) than epithelial ones 
(P = 0.02).[4,36] Another study by Ali et al. has found 
that combining nuclear features from both stromal 
and epithelial compartments improves predictions 
for an human papillomavirus (HPV)-positive 
oropharyngeal cancer progression. Another 
study by Ali et al. has found that combining 
nuclear features from both stromal and epithelial 
compartments improve predictions for an HPV-
positive oropharyngeal cancer progression.[37]

In the context of diagnostic importance, there are 
many examples of studies where ML has used 
its image-based features to differentiate between 
malignant and benign tumors. One such example 
is a study by Lu et al.[28] where nuclear shape and 
texture diversity were used to predict disease-free 
survival in an oral cavity squamous cell carcinoma. 
Another study by Whitney et al.[38] showed that 
nuclear features could differentiate ER-positive 
breast cancer patients with short-term (<10 years) 
survival and long-term survival (>10 years), which 
predicted the recurrence risk using Oncotype DX 
scores. In another study by Osareh and Shadgar,[39] 
an ML model was used, with ten cellular features 
identified by an expert pathologist to classify 
breast tumors from fine-needle aspiration biopsy 
images.
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In the area of disease management, ML has 
gained traction for identifying which patients may 
benefit from specific treatments. Wang et al.[40] 
used nuclear and perinuclear features to stratify 
early-stage NSCLC patients who had surgery into 
high- and low-risk groups for recurrence, helping 
to identify those who might benefit from adjuvant 
chemotherapy. In addition, they showed that the 
spatial arrangement of nuclei and TILs could 
predict response to anti-PD-1 therapy (nivolumab) 
in late-stage NSCLC patients.[40-42]

Taxonomy of ML

A way to better understand the role of ML in our 
daily life is by categorizing it into 4 types, as also 
mentioned in a 2022 study on the same. These 
include supervised, unsupervised, and weakly 
supervised learning (WSL), and reinforcement 
learning. The best among these is supervised 
learning[43] which requires labeled data where 
each input has a corresponding output and is 
mainly used for tasks such as classification and 
regression. The exercise of labeling data, however, 
is an especially time-consuming and expensive 
task in addition to being prone to human error. 
A  contrasting method to this is unsupervised 
learning, which works on analysis without any 
labels and instead uncovers patterns through 
clustering, dimensionality reduction, association, 
and density estimation association.[44] There is less 
human input needed, so it is more intensive and 
less accurate.[45]

Along the spectrum of both these is WSL,[46] which 
addresses the weaknesses of both and is more 
commonly used for medical image analysis.[43] The 
labels used in this method are limited and not as 
precise as those in the supervised learning method. 
An example quoted in a study by Qu et al. is of lung 
cancer scans using incomplete supervision where 
only a few data points are labeled, like diagnosing 
an MRI image with the label “lung cancer” without 
being able to identify the exact tumor details. Often, 
the labels can be wrong due to annotator fatigue or 
inexperience, which accounts for a major limitation 
of this method.

An important innovation in WSL is Multiple 
Instance Learning (MIL), which treats an entire WSI 
as a “bag” of smaller patches, each inheriting the 
overall slide label. This approach was introduced by 
Dietterich et al.[47] in 1997, and extended to medical 
imaging by Quellec.[48] in 2017. It allows models to 
learn from coarse, slide-level annotations without 
requiring pixel labeling, and we can see 3 types of 
detections – global detection, local detection, and 
false-positive reduction. Several reviews provide 
further insights into these MIL types.[49,50]

Reinforcement learning involves agents interacting 
with environments and is useful in games or 
simulations, but the real-world use is limited due 
to complexity and safety concerns.[43] Several 
studies have explored WSL in medical imaging. 
like Rony et al.[51] studied WSL for histology image 
classification and localization, Qu et al. proposed 
a taxonomy of WSL methods (instance-based, 
bagbased, hybrid), though not comprehensive, 
Hassan et al.[52] focused on WSL with transfer 
learning and data augmentation for COVID-19 
computed tomography scans and Zhou.[46] provided 
a broad overview but lacked more detail on medical 
imaging. Despite increasing interest in WSL since 
2015, very few comprehensive reviews exist to 
address gaps in past research and highlight the need 
for precise, efficient ML solutions in healthcare.

DL

A subset of ML is another popular emerging field 
in DP called DL[53] which can automatically learn 
patterns from raw image data without the need for 
manually engineered features.

Unlike traditional ML approaches, DL models 
are trained on labeled images (e.g., benign vs. 
malignant tumors), and they identify the most 
useful image features on their own to distinguish 
between many categories. This has made the 
process not only highly accurate but also easier to 
implement as compared to hand-crafted feature-
based methods.[4] The only downside so far seems 
to be a need for more data and computing power 
by DL models.
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A cornerstone approach in DL analysis is through 
CNNs, which have shown substantial success 
in capturing image-level features.[17,53-55] CNNs 
learn features automatically and directly from the 
images, and there is no need for manual feature 
selection as seen in ML. Their ability to detect 
important features from input images makes them 
overall less biased by the dataset and enables them 
to work well across a wide range of tasks. There are 
many examples of studies exploring the utility of 
CNNs; one has been by Araújo et al.[17] and Esteva 
et al.,[56] where differentiation of benign nevi and 
malignant melanoma was done using this approach, 
and another by Tschandl et al.,[57] where CNNs 
ability to be as accurate as humans was explored 
by classifying pigmented skin lesions using digital 
dermatoscopic images.

The working principle of CNN involves learning 
and extracting parts from images using certain filters 
that exist in the form of multiple convolutional 
sheet networks. These sheets are independently 
layered as building blocks between the input 
and output layers, and they are not connected to 
each other.[4] Since the neuronal network in these 
sheets is not connected to the previous layer, small 
portions of the image can be efficiently focused on. 
This speeds up processing, and the pooling layers 
also reduce the size of the data while retaining 
important information. In the MIDOG challenge,[58] 
CNNs were used to address mitosis detection across 
diverse domains. Spanhol et al.[59] used it on small 
image patches (32 × 32, 64 × 64), which delivered 
an overall good accuracy but with a downside 
of weaker output at high magnification. Larger 
patches (101 × 101) were used in a subsequent 
study by Ciresan et al.,[60] detecting mitosis 
accurately. This significantly paved the way for 
CNNs to excel in mitosis detection. In addition 
to identifying key tissue features like mitotic 
figures, CNNs have also been used detecting 
and measuring cells (such as lymphocytes or 
neutrophils), identifying nuclei, stroma, or glands, 
and highlighting important areas such as tumors or 
surrounding tissue. They have played a key role in 
automating Gleason grading and prostate cancer 
diagnosis.[61] In addition, CNN-based models have 

been employed for feature extraction to classify 
brain tumor grades and for accurate mitosis 
detection in breast cancer.[62] In histology, CNNs 
have enabled effective nuclei segmentation, even 
under weakly supervised training conditions,[63] 
demonstrating their adaptability and robustness 
across tasks. One system called DeepFocus by 
Brixel et al.[64] uses CNNs to find and remove blurry 
or out-of-focus areas in WSIs with an accuracy of 
93.2% (±9.6%).[4]

Graph neural networks (GNNs) are gaining 
prominence as a powerful extension of DL, 
particularly suited to domains where data is 
relational and irregularly structured. Many forms 
of medical data are better modeled as graphs, 
where relationships between entities are crucial. 
In addition to using ML to classify immune cells 
and tumor cells, a graph-based description of TILs 
and neoplastic cells pattern can be used to describe 
spatial interactions between both (SpaTILs score) 
and TIL clusters density patterns. These scores can 
be used to predict recurrence and adjuvant therapy 
success (as studied by Azarianpour et al.).[65] A 
study in 2020 used a similar workflow to first 
classify between stromal, immune and neoplastic 
cells in melanomas and then describe the spatial 
arrangement of those cells from a graph-based 
approach.[31] However, while GNNs have shown 
promise, their use in the medical field remains 
relatively under-explored compared to traditional 
DL methods, and research on GNN interpretability is 
still immature, with few clinical applications so far.

Generative AI approaches
Generative adversarial networks (GANs) are 
another type of DL model that can create, in a crude 
sense, a realistic-looking fake image by learning 
from a real one.[66,67] In a technical sense, GAN’s 
working principle is based on 2 competing neural 
networks, where one network (generator) produces 
synthetic (fake) data from the exemplars fed to 
the network, while the second one (discriminator) 
assesses the concordance between the original 
and generated (fake) data. The goal is to reduce 
the classification error of the second network in 
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a way that produces the closest possible output to 
the original image. GANs are used in histology for 
data augmentation, i.e., making more realistic tissue 
images to train other models and helping researchers 
when real medical images are limited. An upgrade 
to this is a Conditional GAN (cGAN), which adds 
extra information (like labels or categories) to 
guide the image generation.[68] For example, cGAN 
generates “lung cancer” tissue images exclusively 
instead of random ones.[69] This makes the output 
overall more controlled and useful for specific tasks.

Figure 1 gives a conceptual overview illustrating 
the transition from early rule-based CAD systems 
to advanced DL frameworks. It highlights how 
AI models have progressed from manual, feature-
based analysis (domain-inspired and domain-
agnostic) to automatic features such as CNNs, 
spatial graph modeling (GNNs), and synthetic 
data generation (GANs/cGANs) for robust tissue 
interpretation.

Clinical Applications and Impact

Cancer detection and diagnosis
The most common applications of AI have been 
for malignancies, with its wide role in detection, 
grading, prognosis prediction, therapeutic 
target identification, and molecular profiling.[4] 
Although limited, among its noncancer diagnostic 
applications, one is its use in the classification of 
kidney biopsies.[70,71] There have been few studies 
that show enhanced sensitivity of the AI system 
as compared to human analysis, with one study 
showing 99% accuracy of AI in detecting breast 
cancer metastases in lymph nodes, compared 
to 81% for pathologists.[6] Similar findings 
have been further extended to other cancers, 
including colon cancer, head and neck cancer, 
and melanoma, paving the way for reduced 
diagnostic errors and improved classification 
accuracy, which is crucial for choosing the right 

Figure 1: Evolution of computational pathology approaches, showing the transition from rule-based CAD systems 
to deep learning frameworks (CNNs, GNNs, GANs/cGANs) for advanced tissue interpretation.
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treatment. Several cytopathology applications 
of AI have also demonstrated relatively high 
algorithmic sensitivity. In cervical intraepithelial 
lesion screening, sensitivities range from 85.7% 
to 94.7%.[72] Similarly, lung cancer detection using 
AI has shown both high sensitivity and specificity 
of 95.9% and 98.2%, respectively.[73] Furthermore, 
even for urine cytology, the sensitivity and 
specificity achieved by AI models are 80.9% 
and 61.8%, respectively,[74] when benchmarked 
against histopathological findings, which shows 
a promising applicability of the AI models for 
clinical pathology and cytopathology.

Tumor grading with AI

ML has become a vital tool in histological image 
classification, evolving from traditional pipelines to 
more advanced DL approaches. As discussed, the 
process begins with a dataset of microscopic images 
labeled by experts as tumoral or non-tumoral, and 
classical image analysis methods are then used to 
extract features such as color and texture, which 
are fed into ML classifiers for training. Further, 
DL has transformed this workflow using neural 
networks[4] – composed of multiple layers of 
perceptrons trained through gradient descent and 
backpropagation – to automatically learn both 
features and decision rules. While this improves 
performance, it also introduces challenges in 
interpretability, which is especially critical in 
clinical applications. However, these tools have 
shown significant promise in histopathology, 
specifically for tumor grading across various 
cancer types by reducing observer variability.[75] 
In prostate cancer, Gleason grading is a critical 
prognostic tool, but it is traditionally affected by 
inter-observer differences among pathologists, and 
many DL models have demonstrated pathologist-
level performance in this domain.[26,61,76] Similarly, 
studies by Arvaniti et al.,[77] Nagpal et al.,[78] and 
Bulten et al. (2020)[79] also reported high accuracy 
of DL-based systems in grading tissue microarrays 
and biopsies.

In breast cancer, the Nottingham grading 
system presents unique challenges, mainly 

in mitosis detection, which was emphasized 
in the MITOS-ATYPIA-14.[80] Similarly, in 
colorectal adenocarcinomas, glandular architecture 
plays a key role in tumor grading, so a study 
by Sirinukunwattana et al.[81] tackled gland 
segmentation challenges, while Awan et al. 
employed gland shape features in ML models to 
predict tumor grade.[82] Across all these domains, AI 
has not only automated and standardized grading, 
but it also supports more reproducible and scalable 
diagnostic workflows.

Predicting genetic alterations

DL is increasingly being used to predict genetic 
alterations directly from histological slides, 
providing cost-effective and rapid alternatives to 
traditional molecular testing. One key application 
has been in detecting microsatellite instability 
(MSI), which arises from defects in DNA 
mismatch repair genes and is especially prevalent 
in gastrointestinal cancers. MSI has major 
therapeutic significance, as MSI-high tumors are 
highly responsive to immunotherapy. Several 
studies have shown that DL can predict MSI status 
from histopathology slides, as summarized by 
Klein et al.[83] Echle et al. further validated this 
approach by training DL models on 8836 WSIs 
of colorectal cancer (CRC), underscoring its 
clinical utility.[84] Another emerging use of AI is in 
detecting virus-associated cancers, such as those 
linked to HPV and Epstein–Barr virus (EBV). 
Jouhi et al.[85] and Klein et al.[83] highlighted the 
importance of detecting these oncogenic viruses, 
with EBV-positive gastric cancers showing notable 
response to PD-1 inhibitors. Kather et al.[86] 
demonstrated that DL models can identify HPV in 
head-and-neck cancers and EBV in gastric cancers 
using morphological features alone. Beyond 
specific mutations or viral associations, A study 
in 2020 showed that DL models could predict 
broader genomic events – such as whole genome 
duplication, aneuploidy, and transcriptomic 
profiles – across 28 cancer types using 17,396 
WSIs.[83] These advancements signal a shift 
toward integrating AI-based histopathology with 
genomics for precision oncology.
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Prognosis prediction

DL approaches have begun to surpass the traditional 
methods of prognostic prediction in oncology, 
which relied on statistical models such as Cox 
regression (that estimate survival based on clinical 
and pathological features), by leveraging rich 
morphological data from histological images. For 
instance, Wang.[24] developed a shape-based model 
using features extracted from lung adenocarcinoma 
images, while Tabibu et al.[87] used nuclei and 
tumor morphology to predict outcomes in renal 
cell carcinoma. Kather et al.[88] introduced a novel 
“deep stroma score” derived from CRC WSIs, 
correlating stromal patterns with prognosis.

A more advanced method, Survival CNNs 
(SCNNs), enables direct prediction of patient risk 
from histological tiles. Zhu et al.[89] showed that 
SCNNs outperformed traditional Cox models in 
lung cancer prognosis, whereas Mobadersany 
et al. and Courtiol et al. applied this to glioma 
and mesothelioma,[90,91] discovering both known 
and novel prognostic markers. In hepatocellular 
carcinoma, a series of studies by Calderaro et al. 
highlighted DL’s ability to detect morphological 
features linked to survival outcomes.[92] Finally, 
Skrede et al.[93] demonstrated that an ensemble DL 
model could outperform conventional prognostic 
markers in CRC, showcasing the growing potential 
of AI to revolutionize risk stratification and 
treatment planning.

Tumor immune microenvironment (TILs)

The tumor immune microenvironment, particularly 
the presence and composition of TILs, plays a 
critical role in determining cancer prognosis and 
response to immunotherapy. Specific immune 
cell types carry prognostic significance: CD8+ 
cytotoxic T cells are generally associated with 
better outcomes,[83] whereas regulatory T cells 
(Tregs) marked by FoxP3 expression often 
indicate a poorer prognosis.[94] To standardize 
TIL evaluation, several quantitative methods 
have been developed. Guidelines for assessing 
immune infiltrates on H&E-stained slides were 
proposed.[95,96] Notably, there are studies that 

introduced the immuscore, based on CD3 and 
CD8 T-cell densities, which was validated in 
over 2500 CRC patients across 13 countries.[83] 
Other studies employed spatial density profiling 
of lymphocytes to refine immune landscape 
evaluation. However, manual interpretation 
and variability in immunohistochemical (IHC) 
staining, especially for programmed death-ligand 
1 (PD-L1), pose challenges, underlining the 
need for automated, AI-powered methods for 
reproducible and scalable immune profiling in 
clinical pathology.[97]

Predictive biomarkers and precision 
oncology
CNNs have been applied to automate the analysis 
of IHC labeling, such as human epidermal growth 
factor receptor 2 (HER2), a critical biomarker in 
breast cancer diagnosis, as also demonstrated in a 
study by Qaiser et al., in 2018, called the HER2 
challenge.[98] Similar approaches have been used to 
detect immune cells labeled for CD3, CD8, CD20, 
CD3, CD8, CD45, and for PD-L1 scoring. These 
methods enhance detection accuracy by reducing 
labeling variability within and across slides.[83] In 
addition, DL and ML can classify tissue subtypes 
to automatically define regions of interest, enabling 
subsequent quantification of labeled lymphocyte 
subtypes using classical image analysis (Reichling 
et al., 2020).[99]

Cytopathology and subspecialty 
applications
AI in cytopathology offers multiple applications 
and benefits. It assists in cell classification, 
detecting abnormalities, and predicting disease 
progression using annotated datasets. CAD 
systems, as discussed before, improve accuracy 
in certain cancers like urothelial carcinoma 
assessment. ML tools support seamless integration 
with ultrasound and fine-needle aspiration 
cytology. There has been a significant advancement 
in the field of cytopathology, with AI assisting in 
the early detection of thyroid cancers. It has shown 
potential as a diagnostic aid with studies such as 
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one by Tessler and Thomas that highlight AI’s 
effectiveness in evaluating thyroid malignancy.[100] 
Beyond thyroid applications, AI is also being 
explored in specialized cytopathology areas such 
as fungal cytology, where AI aids in identifying 
oral dysplasia using CD44-SNA1 markers.[101] 
Moreover, AI-driven survival prediction models 
have been applied to various non-gynecologic 
cancers. In urinary tract and thyroid cytopathology, 
AI has demonstrated improvements in diagnostic 
accuracy and risk stratification, indicating its 
growing role in precision medicine.

Integration with Clinical 
Workflows, Challenges, and Risk 
Mitigation

While AI has revolutionized pathology by improving 
diagnostic accuracy and efficiency, it also introduces 
significant risks. These include algorithmic bias due 
to training on non-representative datasets, reduced 
transparency in decision-making (particularly 
with DL’s “black box” nature),[102] and potential 
over-reliance on automated systems. Moreover, 
without rigorous validation across diverse clinical 
settings, AI models risk producing misleading 
results that could adversely impact patient care. 
Data privacy and security concerns also loom 
large, especially when handling sensitive patient 
information. Critically, the quality and diversity of 
the image datasets used to train these models play 
a central role in determining their generalizability 
and reliability in clinical practice. To address 
these risks, robust mitigation strategies must be 
implemented. These include using diverse, high-
quality datasets for model training and validation, 
incorporating explainable AI approaches to enhance 
model transparency, and fostering a collaborative 
workflow where AI complements (rather than 
replaces) pathologist expertise. The need for 
continuous model updating (to incorporate new data 
and avoid performance degradation over time) and 
the importance of interdisciplinary training (to help 
pathologists and data scientists work seamlessly 
together) are extremely key to achieving this.

Future Directions

Emerging trend of spatial 
transcriptomics
Spatial transcriptomics is a groundbreaking method 
that maps gene activity directly onto their physical 
locations within intact tissue, letting researchers 
see not just which genes are active, but where they 
are while keeping tissue structure intact.[103] AI and 
DL, especially tools like CNNs, have improved 
how we analyze images of tissues. Since spatial 
transcriptomics include both gene expression and 
images, combining the two can give a fuller picture 
of tissue biology. However, it is difficult to merge 
these high-dimensional data types due to different 
expertise and challenges in interpreting image 
features. To address this, a structured approach is 
needed, which can be achieved by either of these 
2 strategies, as explored in a review article by 
Chelebian et al. Translation, which uses image 
features to predict gene expression (faster and 
cheaper), or integration which combines both types 
of data for deeper insight.[104]

AI chatbots for report interpretation
A recent 2024 study by Steimetz et al. explored 
the use of generative AI chatbots to simplify 
pathology reports for patients.[105] Inspired 
by an earlier work showing that chatbots 
can offer empathetic responses, their study 
highlighted the potential to support rather 
than replace physicians by making complex 
medical information more understandable. This 
revolved around the idea of helping patients 
with low health literacy, ultimately improving 
engagement in their care.

Chatbots could also streamline clinical workflows 
by automatically categorizing reports (e.g., benign, 
premalignant, malignant), allowing faster triage 
and potentially releasing benign results directly to 
patients without delay. Fine-tuning models may 
improve reliability, but until then, chatbot outputs 
should be reviewed by clinicians.
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Conclusions

AI has emerged as a powerful tool in modern 
pathology, offering solutions to longstanding 
challenges in diagnostic accuracy, reproducibility, 
and efficiency. While these technological advances 
have already demonstrated significant clinical 
impact–particularly in cancer detection, prognosis, 
and molecular characterization–there remain 
important hurdles to widespread implementation, 
including issues of data diversity, model 
interpretability, and clinical validation.

As AI continues to evolve, fostering interdisciplinary 
collaborations between pathologists, data scientists, 
and regulatory bodies will be key to realizing its 
full potential in delivering precision, equity, and 
personalized care to patients.
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